Audio-driven emotional 3D facial animation encounters two significant challenges: (1) reliance on single-modal control signals (videos, text, or emotion labels) without leveraging their complementary strengths for comprehensive emotion manipulation, and (2) deterministic regression-based mapping that constrains the stochastic nature of emotional expressions and non-verbal behaviors, limiting the expressiveness of synthesized animations. To address these challenges, we present a diffusion-based framework for controllable expressive 3D facial animation. Our approach introduces two key innovations: (1) a FLAME-centered multimodal emotion binding strategy that aligns diverse modalities (text, audio, and emotion labels) through contrastive learning, enabling flexible emotion control from multiple signal sources, and (2) an attention-based latent diffusion model with content-aware attention and emotion-guided layers, which enriches motion diversity while maintaining temporal coherence and natural facial dynamics. Extensive experiments demonstrate that our method outperforms existing approaches across most metrics, achieving a 21.6\% improvement in emotion similarity while preserving physiologically plausible facial dynamics.
If you find our work useful, please consider citing: